V12A-03
Plate boundary processes as alternatives to mantle plume effects on the Reykjanes Ridge
Abstract:
The North Atlantic basin displays clear regional anomalies in depth and other features centered near Iceland. A current paradigm holds that these anomalies are due to a mantle plume and that the Reykjanes Ridge, located over this plume, is a sensitive recorder of its activity in the crust it accretes. Thus, many seafloor spreading features of the Reykjanes Ridge including axial reconfigurations from orthogonal to oblique spreading, elimination of segment offsets and transform faults, and formation of V-shaped ridges and troughs flanking the axis have been attributed to mantle plume thermal effects radiating outward from beneath Iceland. Based on new geophysical data from a R/V Marcus G Langseth cruise to the southern Reykjanes Ridge we propose an alternate hypothesis: that plate boundary processes superimposed on the larger regional anomalies can account for these seafloor spreading features.A key plate boundary process is sub-axial buoyant mantle upwelling because it can increase melt production and crustal thickness relative to passive mantle advection without changes in mantle temperature. We hypothesize that on a long and linear slow spreading ridge underlain by a regional gradient in mantle temperature and water content, buoyant mantle upwelling can propagate along axis and create many of the seafloor spreading effects currently attributed to radiating mantle plume thermal pulses. However, propagating buoyant mantle upwelling is fundamentally a wave-like phenomenon wherein only the form of upwelling propagates along axis, not actual mantle material. This has profoundly different implications for the formation of crustal structures than in mantle plume models, which require actual rapid radial mantle flow. This property of the sub-axial propagating buoyant mantle upwelling model, if correct, invalidates interpretation of prominent Reykjanes Ridge seafloor spreading features as indicators of regional mantle plume flow and requires reevaluation of geodynamic models based on this assumption.