A41F-0120
A Climatology of Nocturnal-Convection Initiation Over the Central Great Plains

Thursday, 17 December 2015
Poster Hall (Moscone South)
Dylan Walter Reif and Howard B Bluestein, University of Oklahoma Norman Campus, Norman, OK, United States
Abstract:
A nocturnal maximum in rainfall and thunderstorm activity over the central Great Plains is widely documented, but the mechanisms for understanding the development of thunderstorms over the region at night are still not well understood. Elevated convection, defined by Colman (1990) as storms formed through ascent above frontal surfaces, is one explanation, but our study shows that many thunderstorms can initiate at night without the presence of an elevated frontal inversion or nearby surface boundary. We address the following questions: Of all the events documented, what percentage fall under this definition of elevated convection, and what percentage fall outside of that definition? How do characteristics differ among the events that fall under that definition and the events that fall outside that definition?

This study documents convection initiation (CI) events occurring at night over the central Great Plains from 1996 through 2014 during the months of April through July. Storm characteristics such as storm type (defined as linear, areal, or single cell), storm motion, initiation time and location, and others were documented. Once all of the cases were documented, surface data were examined to locate any nearby surface boundaries. The event’s location relative to these boundaries (if they existed) was documented. Three main modes of CI were identified: formation on a surface boundary, formation on the cold side of a surface boundary, and formation without the presence of a surface boundary. A climatology of these events will be presented. There are many differences among the different modes of CI at night. One result is that there appears to be two main peaks of CI time at night: one early at night and one later at night. The later peak is likely due to the events that form in the absence of a nearby surface boundary.