S23B-2709
Imaging Fracking Zones by Microseismic Reverse Time Migration for Downhole Microseismic Monitoring

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Ye Lin, USTC University of Science and Technology of China, Hefei, China and Haijiang Zhang, University of Science and Technology of China, Hefei, China
Abstract:
Hydraulic fracturing is an engineering tool to create fractures in order to better recover oil and gas from low permeability reservoirs. Because microseismic events are generally associated with fracturing development, microseismic monitoring has been used to evaluate the fracking process. Microseismic monitoring generally relies on locating microseismic events to understand the spatial distribution of fractures. For the multi-stage fracturing treatment, fractures created in former stages are strong scatterers in the medium and can induce strong scattering waves on the waveforms for microseismic events induced during later stages. In this study, we propose to take advantage of microseismic scattering waves to image fracking zones by using seismic reverse time migration method.

For downhole microseismic monitoring that involves installing a string of seismic sensors in a borehole near the injection well, the observation geometry is actually similar to the VSP (vertical seismic profile) system. For this reason, we adapt the VSP migration method for the common shot gather to the common event gather. Microseismic reverse-time migration method involves solving wave equation both forward and backward in time for each microseismic event. At current stage, the microseismic RTM is based on 2D acoustic wave equation (Zhang and Sun, 2008), solved by the finite-difference method with PML absorbing boundary condition applied to suppress the reflections of artificial boundaries. Additionally, we use local wavefield decomposition instead of cross-correlation imaging condition to suppress the imaging noise.

For testing the method, we create a synthetic dataset for a downhole microseismic monitoring system with multiple fracking stages. It shows that microseismic migration using individual event is able to clearly reveal the fracture zone. The shorter distance between fractures and the microseismic event the clearer the migration image is. By summing migration images for many events, it can better reveal the fracture development during the hydraulic fracturing treatment. The synthetic test shows that microseismic migration is able to characterize the fracturing zone along with microseismic events. We will extend the method from 2D to 3D as well as from acoustic to elastic and apply it to real microseismic data.