B44A-05
Near-Real-Time Monitoring and Reporting of Crop Growth Condition and Harvest Status Using an Integrated Optical and Radar Approach at the National-Scale in Canada

Thursday, 17 December 2015: 17:00
2006 (Moscone West)
Jiali Shang, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
Abstract:
There has been an increasing need to have accurate and spatially detailed information on crop growth condition and harvest status over Canada’s agricultural land so that the impacts of environmental conditions, market supply and demand, and transportation network limitations on crop production can be understood fully and acted upon in a timely manner. Presently, Canada doesn’t have a national dataset that can provide near-real-time geospatial information on crop growth stage and harvest systematically so that reporting on risk events can be linked directly to the grain supply chain and crop production fluctuations.

The intent of this study is to develop an integrated approach using Earth observation (EO) technology to provide a consistent, comprehensive picture of crop growth cycles (growth conditions and stages) and agricultural management activities (field preparation for seeding, harvest, and residue management). Integration of the optical and microwave satellite remote sensing technologies is imperative for robust methodology development and eventually for operational implementation. Particularly, the current synthetic aperture radar (SAR) system Radarsat-2 and to be launched Radarsat Constellation Mission (RCM) are unique EO resources to Canada. Incorporating these Canadian SAR resources with international SAR missions such as the Cosmesky-Med and TerraSAR, could be of great potential for developing change detection technologies particularly useful for monitoring harvest as well as other types of agricultural management events.

The study revealed that radar and multi-scale (30m and 250m) optical satellite data can directly detect or infer 1) seeding date, 2) crop growth stages and gross primary productivity (GPP), and 3) harvest progress. Operational prototypes for providing growing-season information at the crop-specific level will be developed across the Canadian agricultural land base.