PP41B-2238
Late Holocene stable carbon and nitrogen isotopic variation of bulk organic matter deposited in Blackwood Sinkhole, Abaco, The Bahamas

Thursday, 17 December 2015
Poster Hall (Moscone South)
Annie Tamalavage, Texas A & M University, Oceanography, College Station, TX, United States
Abstract:
In the modern climate of the Bahamas, a latitudinal precipitation gradient only allows Pine (Pinus caribaea var. bahamensis) dominated forests to exist on the more mesic (humid) northern islands (Abaco, Andros, New Providence, Grand Bahamas). Previous research suggests that the northern Bahamas underwent dramatic environmental changes in the late Holocene (e.g., waves of human arrival, shifts in terrestrial vegetation and animal extinctions). However, disentangling the timing and relative forcing (climatic vs. anthropogenic) of these changes has proven challenging without high-resolution terrestrial climate records. Recently, a late Holocene decadal to multi-decadal laminated sedimentary record was recovered from Blackwood Sinkhole, on Abaco Island. The bottom of the sinkhole is characterized by anoxic, saline groundwater, while the upper, brackish meteoric lens provides a habitat to fish, algae and other organisms. Here, we present δ13Corg and δ15Norg values of bulk organic matter (OM) taken every cm of the 110 cm core to help elucidate changes in the chemical composition of the source of OM reaching the anoxic sediments of the sinkhole. δ13Corg values change at 812 Cal yrs BP (2s: 931-681 Cal yrs BP, 31.7 cm depth) from −30.5 ± 1.6‰ in the lower 80 cm of the core to −27.6 ± 1.2‰ in the upper 30 cm. There is a synchronous change from more enriched δ15N values, 3.7 ± 1.1‰, in the lower portion of the core, to lower δ15N values (1.9 ± .5‰), in the upper portion of the core. A pollen-based reconstruction of terrestrial vegetation from the same core indicates that these isotopic shifts are concomitant with a shift from a dominance of Arecaceae (Palms) and tropical dry hardwoods below 30 cm, to Pinus and Conocarpus predominance above 30 cm. These results indicate that the source of sedimentary OM deposited into the sinkhole changed coherently with regional landscape change. Biomarker analyses will be used to further identify the role of autochthonous vs. allochthonous inputs of OM and hydrological residence time on sedimentary records of the Northern Bahamas in the late Holocene.