EP52A-04
Experiments on Bedrock Cover in a Highly Sinuous Channel
Friday, 18 December 2015: 11:05
2005 (Moscone West)
Gary Parker, University of Illinois at Urbana Champaign, Urbana, IL, United States
Abstract:
One of several mechanisms by which bedrock rivers can incise is abrasion of the bedrock surface by colliding sediment particles. This effect has been captured in terms of a “cover factor” corresponding to the areal fraction p of the bed that is covered with sediment. According to this formulation, a value of p equal to 1 corresponds to complete alluvial cover: sediment particles strike each other and no bedrock abrasion is accomplished. Correspondingly, a value of p equal to 0 corresponds to the absence of sediment: no particles are available to strike the bed, and again no bedrock abrasion is accomplished. Thus the condition 0 < p < 1 is hypothesized to be the condition for incision driven by abrasion. At the microscopic level, however, p can take only the binary values 0 and 1: either a point on the bedrock surface is covered or is not covered. Therefore, the value of p that enters into any morphodynamic formulation of cover must represent an average over some spatiotemporal window. Here we consider the case of a highly sinuous meandering flume. The bed is set in concrete to take the topography corresponding to purely alluvial mobile-bed equilibrium. The recirculation of sediment over this bed at below-capacity conditions leads to a complex pattern of free and forced bars that only partially cover the bed. At certain locations, such as near the inside of bends, the bed is always covered, where at other locations, such as right near the apexes of the very tight bends in the flume, the bed is almost never covered. At other locations, the instantaneous cover fluctuates between the binary values 0 and 1, reflecting the migration of bars of various sizes over the bedrock surface. The averaging of these binary values over appropriate time windows allows determination of the local spatial variation of p that can serve as input to a numerical model of the evolution of bedrock meandering channels.