NH34A-08
Earth’s Largest Terrestrial Landslide (The Markagunt Gravity Slide of Southwest Utah): Insights from the Catastrophic Collapse of a Volcanic Field

Wednesday, 16 December 2015: 17:45
309 (Moscone South)
David B. Hacker, Kent State University Kent Campus, Department of Geology, Kent, OH, United States, Robert F. Biek, Utah Geological Survey, Salt Lake City, UT, United States and Peter D Rowley, Geologic Mapping Inc., New Harmony, UT, United States
Abstract:
The newly discovered Miocene Markagunt gravity slide (MGS; Utah, USA) represents the largest volcanic landslide structure on Earth. Recent geologic mapping of the MGS indicates that it was a large contiguous volcanic sheet of allochthonous andesitic mudflow breccias and lava flows, volcaniclastic rocks, and intertonguing regional ash-flow tuffs that blanketed an area of at least 5000 km2 with an estimated volume of ~3000 km3. From its breakaway zone in the Tushar and Mineral Mountains to its southern limits, the MGS is over 95 km long and at least 65 km wide. The MGS consists of four distinct structural segments: 1) a high-angle breakaway segment, 2) a bedding-plane segment, ~60 km long and ~65 km wide, typically located within the volcaniclastic Eocene-Oligocene Brian Head Formation, 3) a ramp segment ~1-2 km wide where the slide cuts upsection, and 4) a former land surface segment where the upper-plate moved at least 35 km over the Miocene landscape. The presence of basal and lateral cataclastic breccias, clastic dikes, jigsaw puzzle fracturing, internal shears, pseudotachylytes, and the overall geometry of the MGS show that it represents a single catastrophic emplacement event. The MGS represents gravitationally induced collapse of the southwest sector of the Oligocene to Miocene Marysvale volcanic field. We suggest that continuous growth of the Marysvale volcanic field, loading more volcanic rocks on a structurally weak Brian Head basement, created conditions necessary for gravity sliding. In addition, inflation of the volcanic pile due to multiple magmatic intrusions tilted the strata gently southward, inducing lateral spreading of the sub-volcanic rocks prior to failure. Although similar smaller-scale failures have been recognized from individual volcanoes, the MGS represents a new class of low frequency but high impact hazards associated with catastrophic sector collapse of large volcanic fields containing multiple volcanoes. The relationship of the MGS to volcanic field development provides an analog for better understanding of such extreme events. We propose that magmatic doming and lateral volcanic field spreading prior to collapse could have important implications on the detection potential and consequent hazard assessment of gigantic landslide events from collapsing volcanic fields.