GC21B-1096
Assessment of the water and energy budget simulation of three land surface models: CLM4.5, CoLM2014, and CoLM2005

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Chengwei Li, Hui Lu and Xin Wen, Center for Earth System Science, Tsinghua University, Beijing, China
Abstract:
Land surface model (LSM), which simulates energy, water and momentum exchanges between land and atmosphere, is an important component of Earth System Models (ESM). As shown in CMIP5, different ESMs usually use different LSMs and represent various land surface status. In order to select a land surface model which could be embedded into the ESM developed in Tsinghua University, we firstly evaluate the performance of three LSMs: Community Land Model (CLM4.5) and two different versions of Common Land Model (CoLM2005 and CoLM2014). All of three models were driven by CRUNCEP data and simulation results from 1980 to 2010 were used in this study. Diagnostic data provided by NCAR, global latent and sensible heat flux map estimated by Jung, net radiation from SRB, and in situ observation collected from FluxNet were used as reference data.

Two variables, surface runoff and snow depth, were used for evaluating the model performance in water budget simulation, while three variables including net radiation, sensible heat, and latent heat were used for assessing energy budget simulation.

For 30 years averaged runoff, global average value of Colm2014 is 0.44mm/day and close to the diagnostic value of 0.75 mm/day, while that of Colm2005 is 0.44mm/day and that of CLM is 0.20mm/day. For snow depth simulation, three models all have overestimation in the Northern Hemisphere and underestimation in the Southern Hemisphere compare to diagnostic data.

For 30 years energy budget simulation, at global scale, CoLM2005 performs best in latent heat estimation, CoLM2014 performs best in sensible heat simulation, and CoLM2005 and CoLM2014 make similar performance in net radiation estimation but is still better than CLM. At regional and local scale, comparing to the four years average of flux tower observation, RMSE of CoLM2005 is the smallest for latent heat (9.717 W/m2) , and for sensible heat simulation, RMSE of CoLM2005 (13.048 W/m2) is slightly greater than CLM(10.767 W/m2) but still better than CoLM2014(30.085 W/m2).

Our analysis shows that both CoLM 2005 and CoLM 2014 are able to reproduce comparable land surface water and energy fluxes. It implies that the ESM developed in Tsinghua University may use CoLM, a LSM developed and maintained in China, as the land surface component. .