DI13B-2669
A Systematic Study on the Formation of South American Flat-Slab Subduction
Monday, 14 December 2015
Poster Hall (Moscone South)
Jiashun Hu, University of Illinois at Urbana Champaign, Urbana, IL, United States
Abstract:
The South American subduction zone is characterized by its along-strike variation from flat to steeply dipping slabs. Both formation mechanisms and geometry of flat slabs in South America remain unclear. To evaluate the relative contribution of different mechanisms to flat slab formation, we simulate the post-100 Ma subduction history below South America using 3-D geodynamic models by progressively incorporating key tectonic features including seafloor ages, buoyant oceanic crusts, thickened oceanic plateaus (i.e. the Inca plateau, Nazca Ridge and Juan Fernandez Ridge), continental cratons, as well as deformable trench profiles according to recent geological reconstructions. With a uniform seafloor age of 30 Ma (i.e., the spatial average of the Nazca Plate since 20 Ma), we get steep (>30°, measured at 200 km depth) subduction everywhere except at 25°S -35°S, where the slab dip is affected by earlier subduction at depth. With the actual reconstructed seafloor ages, the slab dip angle is systematically reduced with an average of ~25°; the long-wavelength lateral variation of slab dip angle that resembles the observation results from the spatial variation of slab buoyancy and strength. The addition of a uniformly thick overriding plate, with enhanced dynamic suction in the mantle wedge, further reduces the slab dip angle (<23°) along the entire trench, where the young slab portions are affected more than the old one. Realization of the 3D geometry of cratonic roots enhances along-trench variation of suction force, which results in an additional reduction of slab dip (<20°), especially next to the cratons. While dynamic suction from the overriding plate reduces the long-wavelength slab dip angle, subducting oceanic plateau and aseismic ridges lead to more localized flat-slabs (as low as 15°) as observed. The subduction of aseismic ridges also generates tears within the flat slabs, due to the accumulation of strain at the down-dip end of the ridge. These slab tears are spatially correlated with the absence of seismicity inside the slab. These slab tears may be responsible for the observed adakitic magmatism through slab melting. Our model also suggests a partially molten asthenosphere beneath these tears with eclogites formed on top from solidified melts, and these predictions are consistent with recent seismic images.