P13A-2120
Three Questions about the Enceladus Plumes: Are Large Vapor Chambers Necessary? Do the Plumes Vary in Strength from Year to Year? Do Fractal Aggregates Fit the Brightness Data as Well as Solid Ice?

Monday, 14 December 2015
Poster Hall (Moscone South)
Andrew P. Ingersoll, Miki Nakajima, Shawn Ewald and Peter Gao, California Institute of Technology, Pasadena, CA, United States
Abstract:
Postberg et al (2009) argued that the observed plume activity requires large vapor chambers above the evaporating liquid (left figure). Here we argue that large vapor chambers are unnecessary, and that a liquid-filled crack 1 meter wide extending along the 500 km length of the tiger stripes would be an adequate source (right figure). We consider controlled boiling (companion paper by Nakajima and Ingersoll 2015AGU) regulated by friction between the gas and the walls. Postberg et al use formulas from Rayleigh-Benard convection, which we argue does not apply when bubbles are transferring their latent heat across the liquid-gas interface. We show that modest convection currents in the liquid (few cm/s) can supply energy to the boiling zone and prevent it from freezing.

Hedman et al (2013) reported brightness variations with orbital phase, but they also reported that their 2005 observations were roughly 50% higher than the 2009 observations. Here we extend the observation period to 2015 (Ingersoll and Ewald 2015). Our analysis relies on ISS images whereas Hedman et al rely on VIMS near-IR images, which have 40 times lower resolution. We successfully separate the brightness of the plume from the E-ring background. Our earlier analysis of the particle size distribution (Ingersoll and Ewald 2011) allows us to correct for differences in scattering angle. We confirm a general decline in activity over the 10-year period, but we find hints of fluctuations on shorter time scales.

Kempf (Cassini project science meeting, Jan 22, 2015) reported that the mass of particles in the plumes could be an order of magnitude less than that reported by Ingersoll and Ewald (2011). Kempf used in situ particle measurements by CDA, whereas I&E used brightness observations and the assumption that the particles are solid ice. Here we show (Gao et al 2015AGU) that fractal aggregates fit the brightness data just as well as solid ice, and are consistent with the lower mass reported by Kempf.