IN31B-1762
The National Flood Interoperability Experiment: Bridging Resesarch and Operations

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Fernando R Salas, University of Texas at Austin, Austin, TX, United States
Abstract:
The National Weather Service’s new National Water Center, located on the University of Alabama campus in Tuscaloosa, will become the nation’s hub for comprehensive water resources forecasting. In conjunction with its federal partners the US Geological Survey, Army Corps of Engineers and Federal Emergency Management Agency, the National Weather Service will operationally support both short term flood prediction and long term seasonal forecasting of water resource conditions. By summer 2016, the National Water Center will begin evaluating four streamflow data products at the scale of the NHDPlus river reaches (approximately 2.67 million). In preparation for the release of these products, from September 2014 to August 2015, the National Weather Service partnered with the Consortium of Universities for the Advancement of Hydrologic Science, Inc. to support the National Flood Interoperability Experiment which included a seven week in-residence Summer Institute in Tuscaloosa for university students interested in learning about operational hydrology and flood forecasting. As part of the experiment, 15 hour forecasts from the operational High Resolution Rapid Refresh atmospheric model were used to drive a three kilometer Noah-MP land surface model loosely coupled to a RAPID river routing model operating on the NHDPlus dataset. This workflow was run every three hours during the Summer Institute and the results were made available to those engaged to pursue a range of research topics focused on flood forecasting (e.g. reservoir operations, ensemble forecasting, probabilistic flood inundation mapping, rainfall product evaluation etc.) Although the National Flood Interoperability Experiment was finite in length, it provided a platform through which the academic community could engage federal agencies and vice versa to narrow the gap between research and operations and demonstrate how state of the art research infrastructure, models, services, datasets etc. could be utilized within the context of the operational water enterprise. This paper will provide a reflection on the experiment, present outcomes and describe the road map for continued engagement of the academic community and support for future Summer Institutes at the National Water Center.