T41B-2888
Regional structural analysis and velocity model (Vp) of the Chittagong-Myanmar Fold and Thrust Belt, Bangladesh
Thursday, 17 December 2015
Poster Hall (Moscone South)
Paula Burgi, Earth Observatory of Singapore, Singapore, Singapore, Judith Hubbard, Nanyang Technological University, Singapore, Singapore, Dana E Peterson, Cornell University, Ithaca, NY, United States and Syed Humayun Akhter, University of Dhaka, Department of Geology, Dhaka, Bangladesh
Abstract:
Bangladesh sits on the seismically active Chittagong-Myanmar Fold and Thrust Belt (CMFB), a partially exposed accretionary prism associated with the India-Eurasia collision. Ground shaking due to local and regional earthquakes presents a potential hazard to Bangladesh, one of the most populated areas in the world. In order to constrain this hazard, we first investigate potential seismic sources (active faults), and second we analyze the material through which seismic energy propagates. To address potential earthquake sources, we focus on the Comilla Anticline, which is the frontal-most exposed structure of the CMFB as well as the most proximal to the capital city of Dhaka. We present several industry-acquired and depth-converted seismic reflection profiles, which exhibit an asymmetric detachment fold rising from a relatively deep décollement (5-6 km). Because there is no strong evidence for an associated emergent thrust, this actively growing fold may have low seismic potential. We place this work into a regional context by integrating previous research of CMFB structures to create a regional structural model, which reveals laterally varying wedge geometry. To address ground shaking, the second component of this work, we assess stacking velocities from our seismic reflection data in conjunction with sonic log velocities from several locations in Bangladesh. These data show varying velocity versus depth trends by region. Following similar, data-rich studies performed in the Los Angeles and adjacent basins, we use data and theory-driven fitting techniques to analyze depth-velocity trends for these different regions, and interpolate to create a laterally varying regional seismic velocity model. Velocities generally slow from east to west, consistent with the younging trend as we move from older, exhumed CMFB formations to recent and undeformed deposits.