H13L-1754
Effects of Land-Use Change and Managed Aquifer Recharge on Geochemical Reactions with Implications for Groundwater Quantity and Quality in Atoll Island Aquifers, Roi-Namur, Republic of the Marshall Islands
Monday, 14 December 2015
Poster Hall (Moscone South)
Mehrdad Hejazian, San Francisco State University, San Francisco, CA, United States, Peter W Swarzenski, USGS, Pacific Coastal and Marine Science Center, Santa Cruz, CA, United States, Jason J Gurdak, San Francisco State University, Department of Earth and Climate Sciences, San Francisco, CA, United States, Kingsley O Odigie, University of California Santa Cruz, Santa Cruz, CA, United States and Curt Daron Storlazzi, USGS Pacific Coastal and Marine Science Center Santa Cruz, Santa Cruz, CA, United States
Abstract:
This study compares the hydrogeochemistry of two contrasting atoll groundwater systems in Roi-Namur, Republic of the Marshall Islands. Roi-Namur houses a U.S. Department of Defense military installation and presents an ideal study location where a human impacted aquifer is co-located next to a natural aquifer as part of two artificially conjoined atoll islands. The hydrogeology and geochemistry of carbonate atoll aquifers has been well studied, particularly because of its small, well-defined hydrologic system that allows for relatively precise modeling. However, it is unknown how changes in land-use/land cover and managed aquifer recharge (MAR) alters natural geochemical processes in atoll aquifers. A better understanding of this has implications on groundwater quantity and quality, carbonate dissolution, and best aquifer management practices in the context of rising sea level and saltwater intrusion. Roi has been heavily modified to house military and civilian operations; here, lack of vegetation and managed recharge has increased the volume of potable groundwater and affected the geochemical processes in the freshwater lens and saltwater transition zone. Namur is heavily vegetated and the hydrogeology is indicative of a natural atoll island. A suite of monitoring wells were sampled across both island settings for major ions, nutrients, trace elements, DOC/DIC, δ
13C and δ
18O/
2H isotopes. By modeling geochemical reactions using a conservative mixing approach, we measure deviations from expected reactions and compare the two contrasting settings using derived geochemical profiles through a wide salinity spectrum. Results indicate that groundwater on Namur is more heavily depleted in δ
13C and has greater dissolved inorganic carbon, suggesting higher microbial oxidation and greater dissolution within the carbonate aquifer. This suggests MAR and reduction of vegetation makes the groundwater supply on atoll islands more resilient to sea level rise.