S43A-2769
Estimation of Seismic Attenuation beneath Tateyama Volcano, Central Japan by Using Peak Delay
Abstract:
<span" roman"="Roman"" new="New">The Hida Mountain Range located in central Japan has a lot of active volcanoes. Katsumata et al. (1995, GJI) suggested the presence of regions with low-velocity and low-density as well as low Qanomaly at 5-15 km deep beneath the range. Tateyama volcano is located in the northern part of the range. Iwata et al. (2014, AGU Fall Meeting) quantitatively estimated strength of S-wave attenuation beneath Tateyama volcano using twofold spectral ratios and suggested that regions with high seismic attenuation exist in the south or the southeast of Tateyama volcano. However, it is difficult to estimate the contribution of scattering loss and intrinsic absorption to total attenuation on the basis of this method.<span" roman"="Roman"" new="New">In the present study, we focused on the peak delay (Takahashi et al., 2007, GJI) in seismic envelopes. We used seismograms observed at five NIED Hi-net stations near Tateyama volcano for 31 local earthquakes (MJMA2.5-4.0). We found seismograms recorded after passing below the southern part of the Hida Mountain Range show longer peak delay than those recorded before passing below the region, while there are no clear difference in peak delay for pairs of seismograms before and after passing below Tateyama volcano. It suggests that causes of the attenuation beneath Tateyama volcano and the southern part of the Hida Mountain Range are different.
We used the peak delay values to evaluate the strength of intrinsic absorption. We assumed that the difference of whole peak delay between two seismograms for the same earthquake was caused by intrinsic absorption beneath the region between the two seismic stations. <span" roman"="Roman"" new="New">Wecalculated the change in amplitude and peak delay on the basis of a theory suggested by Azimi et al. (1966, Izvestia, Earth Physics). In case of the two envelopes are quite similar to each other, we conclude that intrinsic absorption is a major cause of total attenuation. If not so, we need to take into account the contribution of scattering attenuation and some others.