A41M-03
Contribution of Brown Carbon to Total Aerosol Absorption in Indo-Gangetic Plain
Thursday, 17 December 2015: 08:30
3004 (Moscone West)
Sachchida Nand Tripathi, Indian Institute of Technology Kanpur, Kanpur, India
Abstract:
Carbonaceous aerosols play an important role in earth’s radiative balance by absorbing and scattering light. We report physical and optical properties of carbonaceous aerosols from Indo-Gangetic Plain (IGP) for 60 days during 2014-15 winter season. Mass concentration and size distribution of black carbon (BC) and organic carbon (OC) were measured in real time using Single Particle Soot Photometer (SP2) and High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) respectively. Optical properties of aerosols at atmospheric and denuded (heated at 300 ˚C) conditions were also measured using 3 wavelength Photo Acoustic Soot Spectrometer (PASS 3). Analysis shows large scale carbonaceous aerosol loading during winter season in IGP. Multiple biomass burning events combined with trash burning contributed to this high loading along with very low boundary layer height. An inter-comparison shows that Aethalometer over estimates BC by a factor of 3 when compared with that of SP 2 measurement. Enhancement in absorption (Eabs) defined as the ratio of atmospheric absorption to denuded absorption shows presence of absorbing organics known as brown carbon (BrC). Optical closure performed between denuded aerosol absorption measured by PASS 3 and Mie theory derived absorption using SP 2 BC size distribution showed a difference of only 30 % at 781 nm. This difference might be due to the non-spherical shape and presence of residual coating on BC. Refractive index of BrC at 405 and 532 nm were derived using optical closure method for the entire sampling period. Overall results indicates that the impact of BrC on optical absorption is significant in areas dominated by biomass burning such as IGP and such effects needs to be considered in global aerosol modelling studies.