PP43A-2248
Disentangling the fossil world from the deep biosphere in marine sediment

Thursday, 17 December 2015
Poster Hall (Moscone South)
John B Kirkpatrick, Emily A Walsh and Steven D'Hondt, University of Rhode Island, Narragansett, RI, United States
Abstract:
DNA in marine sediment contains both detrital sequences and sequences from organisms native to the sediment. The demarcation between these two pools and their rates of respective turnover as sediment ages are generally unknown. Here we address these issues by quantifying the total extractable DNA pool and comparing it to the fraction of sequenced chloroplast DNA (cpDNA) in sediment from two sites in the Bering Sea. Sediment at both of these sites is initially oxic, but transitions to suboxic and anoxic within approximately hundred years. In our samples, cpDNA as a tracer of detrital DNA is dominated by identifiable phylotypes that match specific siliceous microfossil taxa. The fraction of sequences comprised by cpDNA decreases with increasing sediment age over hundreds of thousands of years (kyr) to 1.4 million years (Ma), but does not reach zero at either site. When we take into account the overall shrinkage of the DNA pool, this cpDNA fraction follows a power-law function, suggesting that the residual cpDNA becomes increasingly recalcitrant with age. This increasing recalcitrance can be explained by biological activity decreasing with sediment age and / or by preferential long-term survival of only the most thoroughly protected DNA. In either case, this trend suggests that DNA persisting beyond an initial period (ca. 100 – 200 kyr at our sites) has an increased chance of preservation at depth. The association of sequenced cpDNA reads with specific siliceous microfossil taxa suggests that microfossils may help to preserve DNA; DNA from such taxa may be useful for studies of paleoenvironmental conditions and biological evolution on timescales that approach or exceed one million years.