B53D-0585
Effects of Nitrogen and Phosphorus Additions on Carbon Cycling of Tropical Mountain Rainforests in Hainan, China

Friday, 18 December 2015
Poster Hall (Moscone South)
Jiang Lai, Peking University, Beijing, China
Abstract:
Nitrogen (N) and Phosphorus (P) deposition is projected to increase significantly in tropical regions in the coming decades, which has changed and will change the structure and function of ecosystems, and affects on ecosystem Carbon (C) cycle. As an important part in global C cycle, how the C cycle of tropical rainforests will be influenced by the N and P deposition should be focused on. This study simulated N and P deposition in a primary and secondary forest of tropical mountain rainforest in Jianfengling, Hainan, China, during five-year field experiment to evaluate the effects of N and P deposition on C cycling processes and relate characteristics. Six levels of N and P treatments were treated: Control, Low-N, Medium-N, High-N, P and N+P.

The relative growth rates (RGR) of tree layer in treatment plots were different from that in control plots after years of N and P addition. Simulated N and P deposition also increased ANPP in primary forest. N and P addition changed the growth of trees by altering soil nutrient and microbial activities. N and P addition increased soil organic carbon (SOC) and total N (TN) content, and significantly increased soil total P (TP) content, not changing soil pH. During the whole process of N and P addition, as net nitrification rate and net N mineralization rate were promoted by N and P addition, and effective N content (nitrate) of soil increased in the plot treated with N treatments compared to the control treatment. The microbial P content was increased by N and P addition, and microbial N was not changed. The increasing N deposition may enhance soil nutrient and stimulate growth of trees, which will lead to an increase of the C sequestration.