A54D-07
Remote sensing of atmospheric greenhouse gases: bridging spatial scales
Friday, 18 December 2015: 17:30
3012 (Moscone West)
Hartmut Boesch1, Neil Humpage1, Robert Parker1, Will Hewson1, Harjinder Sembhi1, Peter Somkuti1, Alex Webb1, Paul I Palmer2 and Liang Feng2, (1)University of Leicester, Leicester, United Kingdom, (2)University of Edinburgh, Edinburgh, United Kingdom
Abstract:
Observed atmospheric variations of greenhouse gases (GHG) are determined by surface-atmosphere exchange, and atmospheric chemistry and transport. These processes occur over a wide spectrum of spatial and temporal scales. Confronting atmospheric transport models and ultimately improving the fidelity of surface flux estimates demands an integrated observing system that captures these scales. We will discuss using data the role of GHG remote sensing instruments and argue that our ability to deploy them from the ground and to fly them on satellite, aircraft, and unmanned airborne vehicles (UAV) mean that they represent the ideal technology to bridge the observed scales of variability. We will discuss a five-year record of global-scale column observations of CO2 and CH4 from the Japanese GOSAT satellite instrument that is available from University of Leicester as part of the ESA Climate Change Initiative. We will showcase new CO2 and CH4 column data that was collected by our shortwave infrared spectrometer GHOST oboard the NASA Global Hak during a regional survey over the eastern Pacific during early spring 2015, which included coincident overpasses from GOSAT and the NASA OCO-2. These data are being used to test atmospheric transport models over remote regions and to help validate satellite observations over the oceans. We will also discuss GHOST data collected on the UK Dornier 226 research aircraft to measure local-scale measurements over Leicester city centre, a major power plant, and downwind of a controlled Cumbrian heathland fire. Finally, we will report preliminary results from a new ground-based Fourier transform spectrometer station at Harwell (80 km west of London). We anticipate that this site will eventually join the TCCON network, which has been used to validation of satellite observations.