S41B-2730
Crustal and upper mantle structures beneath Cenozoic volcanoes on the board of China and North Korea.

Thursday, 17 December 2015
Poster Hall (Moscone South)
Junkee Rhie, Seoul National University, Seoul, South Korea and Seongryong Kim, Australian National University, Canberra, ACT, Australia
Abstract:
The Cenozoic-to-recent volcanoes on the border of China and North Korea are recognized as continental intraplate volcanoes. Despite of much work, the origin and mechanism of the volcanoes remain as an issue of debate, due to their complex and long-lived volcanic activities and lack of detailed information for the crust and upper mantle structures. In this work, ambient noise analysis is performed to image lithospheric structures beneath the volcanoes and surrounding regions using continuous broadband recordings of two temporary networks (1998-1999 PASSCAL array and a part of the 2009-2011 NECASSArray). To better constrain the entire depths of lithosphere in the estimated 3-D velocity structure, we utilize the spectral auto-correlation (SPAC) method and a Bayesian inversion technique to measure phase velocity dispersion data and to obtain shear-wave velocity structures, respectively. We developed a novel grid-search technique for more stable SPAC measurements, and obtained phase velocity data are compared and combined with group and phase velocity data from the conventional frequency-time analysis. Hierarchical and trans-dimensional techniques are implemented in the Bayesian method to estimate more rigorous models and associated uncertainties. The estimated 3-D model shows slower velocity (~0.3 km/s) at the bottom of lithosphere (>60 km) and less modified thick-crust beneath the volcanoes compared to other regions in the model. This suggests our model favors the theory of magma underplating, crustal assimilation, and less volume of magma supply from upper mantle.