NS44A-05
Enhancing analog seismic data resolution using the A/D converter: Examples of Sicilia Channel and Marmara Sea data set

Thursday, 17 December 2015: 17:10
3024 (Moscone West)
Hakan Alp, Istanbul University, Engineering Faculty Department of Geophysical Engineering, Istanbul, Turkey
Abstract:
We present here two data set composed of about 20 multichannel seismic data profiles, for a total of 1102 km of data acquired in the Sicilia Channel in Italy and Marmara Sea in Turkey. The data set of Multichannel seismic reflection profiles and well information acquired for commercial purpose by oil companies in the 1970’s and 1980’s. All profiles in Sicilia Channel, which are available on .pdf files were downloaded from VIDEPI website. Other profiles in Marmara Sea were taken from Turkish Petroleum Corporation. The first step was to convert the graphic files SEG-Y format files, using SeisTrans® software. Due to the great inhomogeneity of the various seismic lines, which have been recorded from different companies with different acquisition parameters, it has been necessary a great job of homogenization and noise reduction through the use of adequate band-pass filters. Then, for each reconstructed seismic line, SEG-Y header editing was necessary in order to assign the CDP (common-depth-points) and the SP (shot points) to the corresponding geographic coordinates. The SEG-Y files so created were uploaded and archived into a project using the Kingdom Suite® seismic package. To perform the calibration of seismic data with the stratigraphic wells, the classic problem is to identify on seismic profiles the reflections corresponding to the lithological variations identified in the wells. This is because the vertical scale of the seismic data is expressed in time, while that of the wells is expressed in meters. The main unknown is then the sound velocity within the different lithologies. In order to better correlate real data reflections with the corresponding stratigraphic discontinuities, synthetic seismogram have been created from the reflectivity series obtained through acoustic impedance calculations. They represent an example of forward modeling to match as closely as possible the real seismic data.