SH31A-2403
Temporal Correlations In Natural Time Analysis and Tsallis Non Extensive Statistical Mechanics

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Panayiotis Varotsos and Nicholas V Sarlis, National and Kapodistrian University of Athens, Athens, Greece
Abstract:
Upon analyzing the seismic catalog in a new time domain termed natural time[1-3] and employing a sliding natural time window comprising a number of events that would occur in a few months, we find that the fluctuations β of the order parameter of seismicity[4] show a minimum βmin a few months before major earthquakes (EQs)[5,6]. Such a minimum appears simultaneously[7] with the initiation of Seismic Electric Signals activity[8] being the first time in which two geophysical observables of different nature exhibit simultaneous anomalous behavior before major EQs. In addition, we show[9] that each precursory βmin is preceded as well as followed by characteristic changes of temporal correlations between EQ magnitudes identified by the celebrated Detrended Fluctuation Analysis of magnitude time series. We indicate that Tsallis non extensive statistical mechanics[10], in the frame of which kappa distributions arise[11], can capture temporal correlations between EQ magnitudes if complemented with natural time analysis [12].

References

  1. P.A. Varotsos, N.V. Sarlis, and E.S. Skordas, Phys Rev E, 66 (2002) 011902.
  2. P.A. Varotsos et al., Phys Rev E 72 (2005) 041103.
  3. Varotsos P. A., Sarlis N. V. and Skordas E. S., Natural Time Analysis: The new view of time. (Springer-Verlag, Berlin Heidelberg) 2011.
  4. N. V. Sarlis, E. S. Skordas and P. A. Varotsos, EPL 91 (2010) 59001.
  5. N. V. Sarlis et al., Proc Natl Acad Sci USA 110 (2013) 13734.
  6. N. V. Sarlis et al., Proc Natl Acad Sci USA 112 (2015) 986.
  7. P. A. Varotsos et al., Tectonophysics, 589 (2013) 116.
  8. P. Varotsos and M. Lazaridou, Tectonophysics 188 (1991) 321.
  9. P. A. Varotsos, N. V. Sarlis, and E. S. Skordas, J Geophys Res Space Physics, 119 (2014), 9192, doi: 10.1002/2014JA0205800.
  10. C. Tsallis, J Stat Phys 52 (1988) 479.
  11. G. Livadiotis, and D. J. McComas, J Geophys Res 114 (2009) A11105, doi:10.1029/2009JA014352.
  12. N. V. Sarlis, E. S. Skordas and P. A. Varotsos, Phys Rev E 82 (2010) 021110.