C44B-08
The Electrical Self-Potential Method as a Non-Intrusive Snow-Hydrological Sensor
Thursday, 17 December 2015: 17:45
3005 (Moscone West)
Sarah S Thompson, University Centre in Svalbard, Longyearbyen, Norway, Bernd Kulessa, Swansea University, College of Science, Cardiff, CF5, United Kingdom, Martin P Lüthi, University of Zurich, Zurich, Switzerland and Richard Essery, University of Edinburgh, Edinburgh, United Kingdom
Abstract:
Building on growing momentum in the application of geophysical techniques to snow problems and, specifically, on new theory and an electrical geophysical snow hydrological model published recently; we demonstrate for the first time that the electrical self-potential geophysical technique can sense in-situ bulk meltwater fluxes. This has broad and immediate implications for snow measurement practice, modelling and operational snow forecasting. Our ability to measure, quantify and assimilate hydrological properties and processes of snow in operational models is disproportionally poor compared to the significance of seasonal snowmelt as a global water resource and major risk factor in flood and avalanche forecasting. Encouraged by recent theoretical, modelling and laboratory work, we show here that the diurnal evolution of aerially-distributed self-potential magnitudes closely track those of bulk meltwater fluxes in melting in-situ snowpacks at Rhone and Jungfraujoch glaciers, Switzerland. Numerical modelling infers temporally-evolving liquid water contents in the snowpacks on successive days in close agreement with snow-pit measurements. Muting previous concerns, the governing physical and chemical properties of snow and meltwater became temporally invariant for modelling purposes. Because measurement procedure is straightforward and readily automated for continuous monitoring over significant spatial scales, we conclude that the self-potential geophysical method is a highly-promising non-intrusive snow-hydrological sensor for measurement practice, modelling and operational snow forecasting.