A33H-0285
Coastal fog prediction with a coupled model (1D+3D) system using the data from a 300 m met tower as input

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Wonheung Kim and Seong Soo Yum, Yonsei University, Seoul, South Korea
Abstract:
Visibility degradation due to fog can be very hazardous both to ground transportation and aviation traffic. However, prediction of fog using numerical models is difficult because fog formation is usually determined by local meteorological conditions that are hard to be measured and modeled with sufficient resolution. For this reason, there have been several attempts to build a coupled system of a fine resolution 1D model and a 3D mesoscale model with a usual grid resolution. In this study we uses the coupled system of the 1D PAFOG model and the 3D WRF model to simulate fogs formed at a southern coastal region of Korea, where the National Center for Intensive Observation of Severe Weather (NCIO) is located. Unique to NCIO is that it has a 300 m meteorological tower on which some basic meteorological variables (temperature, dew point temperature and winds) are measured at eleven different altitudes. In addition comprehensive cloud physics measurements are made with various remote sensing instruments such as cloud radar, wind profiler, microwave radiometer, micro rain radar. Several fog cases are identified during 2015 and will be simulated by the coupled system. The comprehensive set of measurement data from NCIO will be utilized as input to the model system and for evaluating the results. Particularly the data for initial and boundary conditions, which are tightly connected to the coupled model predictability, are extracted from the tower measurement. Furthermore, various sensitivity experiments will be done to enhance our understanding of the coastal fog formation mechanism. Detailed results will be discussed at the conference.