T21F-07
Distinct Thermal and Metasomatic Characteristics of Mantle Lithosphere Beneath Two Proterozoic Terranes Bordering the Kaapvaal Craton of Southern Africa

Tuesday, 15 December 2015: 09:40
304 (Moscone South)
Philip E Janney and Ellwin T. Shiimi, University of Cape Town, Cape Town, South Africa
Abstract:
There is a first order contrast in compositional and thermal properties between cold and infertile Archean cratonic mantle and younger, warmer and more fertile Proterozoic lithosphere, but it has also become apparent that coherent thermal and compositional differences exist between adjacent Proterozoic terranes, even in regions that have been stable for over 1 Ga. We report new thermobarometry and in-situ trace element data for garnet peridotite xenoliths from several late Cretaceous (100-70 Ma) kimberlite localities in the western Namaqua-Natal Belt (NNB) and Rehoboth Province (RP), which bound the Archean Kaapvaal craton to the west and south, respectively. The localities include some for which no data have been reported previously. Re-depletion model ages from Os isotopes indicate that the lithosphere beneath the NNB and RP is mainly Early Proterozoic (Pearson et al., Chem. Geol., 2004; Janney et al. J. Petrol., 2010) and there is no evidence from xenolith modal proportions for significant differences in average fertility between lithospheric terranes. Equilibration pressures for garnet peridotites from both terranes fall in a similar range (2 to 5 GPa). However, peridotites from the RP typically have P and T values that fall on or very close to the Kaapvaal cratonic geotherm (apart from a group of peridotites from the Gibeon kimberlites with pressures > 4 GPa that follow an adiabatic gradient; e.g. Franz et al., J. Geol., 1996) whereas peridotites from the western NNB have temperatures roughly 100°C warmer than the cratonic geotherm over the whole depth range. Peridotites from the 140 Ma Melton Wold kimberlite, also in the western NNB, lack these warmer temperatures and suggest that warming was contemporaneous with Late Cretaceous kimberlite magmatism. Metasomatic enrichment in incompatible elements (consistent with interaction with kimberlitic melts) is more pronounced in NNB as compared to RP peridotites. The association of higher temperatures with a greater extent of metasomatic interaction in the NNB peridotites suggests that the two phenomena are related and may indicate pervasive thermal resetting of the NNB mantle lithosphere concurrent with Late Cretaceous kimberlite magmatism, whereas the RP appears to have largely escaped this, except for local infiltration of the lithosphere at depth.