PP31B-2247
Integrated Geochemical-Petrographic Insights on Neoproterozoic Ocean Oxygenation

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Ashleigh Hood1, Noah Planavsky2, Malcolm William Wallace3, Xiangli Wang1 and Bleuenn Gueguen4, (1)Yale University, Department of Geology and Geophysics, New Haven, CT, United States, (2)Yale University, New Haven, United States, (3)University of Melbourne, School of Earth Sciences, Parkville, Australia, (4)Yale University, New Haven, CT, United States
Abstract:
Novel isotope systems have the potential to provide new insights into biogeochemical cycling in Earth’s evolving oceans. However, much recent paleo-redox work has been done without extensive consideration of sample preservation or paleoenvironmental setting. Neoproterozoic reef complexes from South Australia provide a perfect setting to test geochemical redox proxies (e.g. uranium isotopes and trace metal chemistry) within a well-defined sedimentological and petrographic context. These reefs developed significant frameworks over ~1km of steep platform relief from the seafloor, and contain a variety of carbonate components including primary dolomite marine cements. Analysis of a variety of components within these reefs reveals significant variation in uranium isotope composition and trace metal chemistry between components, even within a single sample. Marine cements, which precipitated directly from seawater, have much lower contamination element concentrations (e.g. Al, Zr, Th) than depositional micrites, and appear to represent the best archive of ancient ocean conditions. These cements have high levels of Fe, Mn in shallow and deep reef facies (e.g. 2-3wt% Fe), but only Fe-oxide inclusions in peritidal settings. This distribution suggests ferruginous conditions under a surficial chemocline in this Neoproterozoic seawater. Uranium isotopes from pristine marine cements have relatively heavy values compared to modern seawater (median = -0.22 δ238U). These values are essentially unfractionated from riverine inputs, which we interpret as tracking extensive near quantitative low-T reduction of U(VI) to U(IV) by abundant soluble iron in seawater. Depositional components and late stage cements have a much lighter and more variable U isotope compositions (-0.71 to -0.08 δ238U). This work highlights the need for fundamental petrographic constraints on the preservation of depositional geochemical signatures in the future use and development of sedimentary redox proxies.