T53C-02
Recognizing Mantle Domains Related to an Extensional Cycle: the Record from Western Europe

Friday, 18 December 2015: 13:55
306 (Moscone South)
Suzanne Picazo1, Othmar Muntener1 and Gianreto Manatschal2, (1)University of Lausanne, Lausanne, Switzerland, (2)University of Strasbourg, Strasbourg, France
Abstract:
Most of the studies on rifted margins have shown that the classical predictions of models assuming a “homogeneous” mantle lithosphere without some inheritance are unable to capture the observed large variety of magmatic budgets as a function of extension. More recently, new ideas and concepts have been developed to understand the evolution of the mantle lithosphere in hyper-extended magma-poor rifted margins that are mainly based on observations from the present-day Iberia-Newfoundland and ancient Alpine Tethys rifted margins and the Pyrenean systems. In contrast to the classical assumption assuming a simple, isotropic mantle lithosphere, these new models integrate observations from exposed and drilled mantle rocks and propose that the mantle lithosphere evolved and was modified during an extensional cycle from post-orogenic collapse through several periods of rifting to embryonic oceanic (ultra-) slow seafloor spreading. But it is, at present, unclear how far these ideas can be generalized and if they can explain the nature of mantle rocks observed across Western Europe and, in a more general way, at Atlantic type rifted margins.

We review the available mantle data from Western Europe, i.e. ophiolite massifs, xenoliths and dredged samples, revisit the available terminology concerning mantle massifs and xenoliths and compile the available data to identify different mantle domains. We define chemical and petrological characteristics of mantle domains based on clinopyroxene and spinel compositions and compile them on present-day and paleo-geographic maps of Western Europe. Finally we link the observed distribution of mantle domains to the post-Variscan extensional cycle and link domains to processes related to the late post-Variscan extension, the rift evolution and refertilization associated to hyper-extension and the development of embryonic oceanic domains.