PP53B-2331
Ba/Ca in Planktonic Foraminifera as a Recorder of Freshwater Input to the Ocean: Proxy Refinement in the Gulf of Papua, Papua New Guinea
Abstract:
In the study of paleoclimate, the past several decades have seen large strides in the advancement of proxies designed to reconstruct changes in sea surface temperature (SST); however, techniques for reconstructing ocean salinity are less well developed. The ratio of Ba/Ca in planktic foraminiferal tests has shown initial promise as a tool for reconstructing salinity in continental margin sites near river mouths. In these environments, Ba/Ca shows an inverse correlation with salinity, and often a less clear correlation to nutrients or indicators of productivity, as is more typical in open-ocean settings. An ideal area in which to apply and test foraminiferal Ba/Ca as a proxy for freshwater input is the Western Pacific Warm Pool (WPWP), where temperatures are relatively stable, but large variations in precipitation are today driven by the El Nino Southern Oscillation (ENSO) and strength of the Australian-Indonesian monsoon. Foraminiferal Ba/Ca in sediments proximal to a river mouth should therefore reflect changes in riverine input, which in turn reflect variations in precipitation on different timescales. We present here planktic foraminiferal δ18O, Ba/Ca, and Mg/Ca records spanning the last glacial-interglacial transition from marine sediment cores in the Gulf of Papua, located in the WPWP.The δ18O records show an increase in the magnitude of glacial-interglacial (G-IG) δ18O change (∆18O) moving away from the coastline and the mouth of the primary local freshwater source, the Fly River. The reduced amplitude in G-IG ∆18O in the cores closer to shore, manifested by more negative δ18O values before ~20 kyr ago, is likely due to freshwater input from the Fly River, with the effects diminishing with distance from the Fly River source. Temperature and sea level are also changing over the deglaciation, however, contributing to the signal recorded in the calcite δ18O. We use planktic Mg/Ca analyses and independent records of sea level change to isolate the component of foraminiferal δ18O that is due to salinity, which we then compare to the Ba/Ca records. With continued work toward proxy development, Ba/Ca has the potential to provide insight into past changes in precipitation in the WPWP in response to large or rapid climate change.