PP23A-2276
Reconstructing Quaternary precipitation periodicities with Santa Barbara Basin sediment cores: application of the siliciclastic detrital element proxy at annual resolution

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Tiffany Napier, University of Michigan Ann Arbor, Ann Arbor, MI, United States, Ingrid L Hendy, University of Michigan Ann Arbor, Geological Sciences, Ann Arbor, MI, United States, Linda Hinnov, Linda Hinnov, Atmospheric, Oceanic and Earth Sciences, Fairfax, VA, United States and Erik Thorson Brown, Large Lakes Observatory, Duluth, MN, United States
Abstract:
Precipitation patterns in Southern California directly affect water availability, and extreme weather exacerbates water stress and subsequent societal impacts in this highly populated and vital agricultural region. In the future, mean annual precipitation is predicted to decrease in California, although frequency of heavy precipitation events may increase. To reconstruct annual precipitation history in Southern California, including both the magnitude and recurrence intervals, we analyze sediment from two Late Holocene (past ~150 years and past ~2 ka) and five Pleistocene (~400-450 ka [MIS 11 and 12] and ~735 ka [MIS 18]) cores collected in Santa Barbara Basin using data from XRF core scans for elements associated with the terrigenous siliciclastic detrital fraction of core sediment (Al, Fe, K, Rb, Si, Ti, Zr). We develop a floating annual age model for each core through identification of the annual signal in the siliciclastic detrital fraction. Siliciclastic detrital element concentrations increase in sediment associated with precipitation events and floods, and decrease in sediment associated with droughts. Variability in the concentrations of these elements can thus be used as a precipitation and river runoff proxy. We investigate changes in annual detrital sediment input during glacial, deglacial, and interglacial climate states, and changes due to rapid climate change (centennial to millennial time scales). Power spectral analysis of our annually tuned time series reveals precipitation periodicities associated with the Pacific Decadal Oscillation (15-25, 50-70 years) and El Niño-Southern Oscillation (2-7 years) that are dissimilar to common tidal perigee and nodal periods. These results provide information on the nature and response of precipitation patterns due to past changes in climate forcing, which will improve climate predictions for this region, especially interannual and decadal variability that impact climate on human timescales (i.e. <100 years).