PA21B-2165
Differential Subsidence in Mexico City and its Consequences to the Collective Transport System (Metro)

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Dario E Solano Rojas1, Shimon Wdowinski1, Enrique Cabral2, Yunjun Zhang1 and Yoangel Torres1, (1)University of Miami, Marine Geology and Geophysics, Miami, FL, United States, (2)Instituto de Geofísica, Universidad Nacional Autónoma de México, Departamento de Geomagnetismo y Exploración, Mexico D.F., Mexico
Abstract:
Mexico City is one of the most populated metropolitans in the world, with more than 20 millions inhabitants. It is located above a sequence of deformable unconsolidated lacustrine sediments interlayered with strong volcanic rocks. These natural conditions combined with massive groundwater extraction, caused the city to subside unevenly, at rates from 0 to ~370 mm/yr, which we term differential subsidence. Our study focuses on the Collective Transport System (Metro), the massive, widely used transportation system in the city. It has been in operation since 1969. The Metro system carries an average of more than four million passengers per day along its 218 km of railways. This system has been occasionally damaged by ground deformation, in particular Line 12, in which 50% of its stations where shut down just 2.5 years after the beginning of its operation due to faults, “waves” and “bumps” along the line.

In this study we used Interferometric Synthetic Aperture Radar (InSAR) observations to monitor land subsidence throughout the city and infer differential subsidence along the main Metro lines. Our analysis is based on 34 TerraSAR-X and 36 COSMO-SkyMed high-resolution scenes acquired from mid 2011 to mid 2013. The data were processed using the StaMPS InSAR time series technique, which calculates ground displacement time series for more than 2.5 million selected measurement points, typically separated 3-15 meters apart. The differential subsidence along the Metro lines was calculated by averaging subsidence rate within a 30 m radius circles, every 60 m along the lines. We found that the segments with the most differential deformation are in lines 4, 5, 9, A, B and 12. Our easy-to-implement method can be applied to permanent monitor deformation along the railways, as well as serve as a guide for the development of new lines of the Metro system prospected by Mexico’s City government.