EP33A-1029
Control of Sediment Availability on the Path of Channel Recovery in Bedload-Dominated Rivers

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Helen Doyle, Dartmouth College, Hanover, NH, United States
Abstract:
Following a disturbance, a channel can recover to an equilibrium form by adjusting its slope, width, depth, grain size, or some combination of these dimensions that define the recovery path. In this study we relate the channel recovery path to the quantity and caliber of sediment introduced due to dam construction/removal or erosion caused by flooding. We suggest that the recovery path of a channel depends on the availability of sediment of a size that is transported as bedload during bankfull flows (the “mobile fraction”). We define a ratio, S*, of the sediment volume added to the channel because of the disturbance to the average annual sediment flux. We compare S* values to the recovery path of New England gravel-bedded streams following two dam emplacements and removals and flooding related to Tropical Storm Irene. Pelham Dam in Pelham, MA (removed 2012) and Kendrick Dam in Pittsford, VT (removed 2014) were on similar streams: drainage areas ~25 km2, slopes 1-2%, and bankfull widths ~10 m. Sediment was excavated from both impoundments prior to removal, resulting in lower S* values. Irene-affected study sites are on ~10 gravel-bedded streams in VT, NH, and MA. Sediment input at these sites is due to bank failures and landslides, many of which continue to supply sediment to the channel four years after flooding. To track recovery we collected annual topographic and sediment size data and calculated Shields numbers to determine if channels had reached an equilibrium form. We define equilibrium for bedload rivers as Shields numbers at bankfull discharge equal to that required to initiate bedload transport. Following dam emplacements the channels failed to recover because mobile sediment was unavailable. Fining dominated the recovery at Irene-affected sites (~10% reduction in sediment size) and dam removal sites (up to 30-60% reduction) with little post-disturbance change in channel geometry, possibly due to the limited mobile fraction.