H53G-1743
Mapping Seasonal Evapotranspiration and Root Zone Soil Moisture using a Hybrid Modeling Approach over Vineyards
Abstract:
Estimates of actual crop evapotranspiration (ETa) at field scale over the growing season are required for improving agricultural water management, particularly in water limited and drought prone regions. Remote sensing data from multiple platforms such as airborne and Landsat-based sensors can be used to provide these estimates. Combining these data with surface energy balance models can provide ETa estimates at sub- field scale as well as information on vegetation stress and soil moisture conditions. However, the temporal resolution of airborne and Landsat data does not allow for a continuous ETa monitoring over the course of the growing season. This study presents the application of a hybrid ETa modeling approach developed for monitoring daily ETa and root zone available water at high spatial resolutions.The hybrid ETa modeling approach couples a thermal-based energy balance model with a water balance-based scheme using data assimilation. The two source energy balance (TSEB) model is used to estimate instantaneous ETa which can be extrapolated to daily ETa using a water balance model modified to use the reflectance-based basal crop coefficient for interpolating ETa in between airborne and/or Landsat overpass dates. Moreover, since it is a water balance model, the soil moisture profile is also estimated.
The hybrid ETa approach is applied over vineyard fields in central California. High resolution airborne and Landsat imagery were used to drive the hybrid model. These images were collected during periods that represented different vine phonological stages in 2013 growing season. Estimates of daily ETa and surface energy balance fluxes will be compared with ground-based eddy covariance tower measurements. Estimates of soil moisture at multiple depths will be compared with measurements.