H11B-1332
An Assessment of Risk of Migration of Hydrocarbons or Fracturing Fluids to Fresh Water Aquifers: Wattenberg Field, CO

Monday, 14 December 2015
Poster Hall (Moscone South)
William W Fleckenstein, Colorado School of Mines, Golden, CO, United States
Abstract:
The United States National Science Foundation, engaging 29 researchers at nine institutions, has funded a Sustainability Research Network (SRN) focused on natural gas development. The mission of this Sustainability Research Network is to provide a logical, science-based framework for evaluating the environmental, economic, and social trade-offs between development of natural gas resources and protection of water and air resources and to convey the results of these evaluations to the public in a way that improves the development of policies and regulations governing natural gas and oil development.

Currently, there are a wide range of estimates of the probability of shallow aquifer contamination. There are a series of independent events that must occur to allow hydrocarbon migration and estimates were made of these probabilities. An analysis of data from drilling in the Wattenberg field, CO was made to quantify the probability of contamination.

It has been determined that there are five events that must each independently happen to allow the migration of fracturing fluids, and there are three events that must occur independently for the migration of hydrocarbons. The lower number of independent events, which must arise for hydrocarbon migration to occur, explains the infrequent, but well publicized natural gas migrations in poorly constructed wellbores, and the lack of such publicized events of hydraulic fracturing fluid contamination, which was confirmed by our analysis.

The significance of these results is to help quantify the risks associated with natural gas development, as related to the contamination of surface aquifers. These results will help shape the discussion of the risks of natural gas development and will assist in identifying areas of improved well construction and hydraulic fracturing practices to minimize risk.