SH43A-2431
Drift Wave Turbulence and Magnetic Reconnection

Thursday, 17 December 2015
Poster Hall (Moscone South)
Lora Price, James Frederick Drake and Marc Swisdak, University of Maryland College Park, College Park, MD, United States
Abstract:
An important feature in collisionless magnetic reconnection is the development of sharp discontinuities along the separatrices bounding the Alfvenic outflow. The typical scale length of these features is ρs (the Larmor radius based on the sound speed) for guide field reconnection. Temperature gradients in the inflowing plasma (as might be found in the magnetopause and the magnetotail) can lead to instabilities at these separatrices, specifically drift wave turbulence. We present standalone 2D and 3D PIC simulations of drift wave turbulence to investigate scaling properties and growth rates. We specifically consider stabilization of the lower hybrid drift instability (LHDI) and the development of this instability in the presence of a sheared magnetic field. Further investigations of the relative importance of drift wave turbulence in the development of reconnection will also be considered.