GP51B-1339
MAGNETOSTRATIGRAPHY OF THE LOWER CRETACEOUS HEKOU AND LIUPANSHAN GROUP IN NW CHINA AND ITS IMPLICATIONS FOR THE COMPOSITE OF THE CRETACEOUS NORMAL SUPERCHRON (CNS)
Abstract:
Are the short reversed-polarity subzones of the Cretaceous Normal Superchron (CNS) recorded in non-marine deposits? And, if so, how long did they last? These questions have been a matter of debate for some time. Lower Cretaceous terrestrial deposits in NW China, provide an opportunity to examine this problem. Here we present high-resolution magnetostratigraphic results for two Lower Cretaceous successions, the Liupanshan Group (Liupanshan Basin) and the Hekou Group (Longzhong Basin), NW China, and propose a minor revision for the CNS.The Liupanshan Group is a ~1300-m thick succession and comprises the alluvial-fluvial- lacustrine clastic sediments and carbonate rocks and gypsiferous mudstones. Samples from 457 levels were measured on the 2G cryogenic magnetometer after demagnetization. Six normal-polarity and five reversed-polarity magnetozones were obtained, which are correlated with the M3n to the M-‘2r’ of the GPTS of Gradstein (2012). The paleomagnetic data allow us to assign the Liupanshan Group to the interval from 131 Ma to 106 Ma (Barremian to Late Albian). The Hekou Group is 3700-m thick and consists of fluvial, lacustrine and deltaic sandstones, mudstones, conglomerates. 28 normal-polarity and 27 reversed-polarity magnetozones were observed from the thermal demagnetization for ~ 800 samples, and they can be reasonably correlated to the M15 thorough M-“2r” of GPTS of Gradstein (2012). This correlation yields an age control for the Hekou Group of 139–106 Ma (Valanginian- Albian). The different basal age of these two basins indicates that the Hekou Basin was initially developed prior to the Liupanshan Basin, but they stopped to develop almost at the same time.
We found a short minus magnetozone in the upper part of the two groups, lying between M-‘1r’ and M-‘2r’ of the C34 of GPTS, equivalent to the reversed-polarity subzone (G2003) reported by Gilder et al. (2003) in a basalt from the Tuoyun Basin, NW China. Finally, we propose an alternative version for the C34 (CNS), i.e., the CNS comprises five normal subchrons (labeled as C34n.1n to C34n.5n) which are separated by four minus subchrons (including M’-1r’ (ISEA), G2003, M’-2r’ and M’-3r’). We firstly and clearly confirm the duration of G2003 as 0.2 Myr and M’-2r’ as 1.5 Myr.
Acknowledgement: This study was supported by Chinese NSF (No. 41272127)