DI31B-2576
Reaction Infiltration Instabilities in Partially Molten Rocks
Abstract:
Tabular dunites in ophiolites are thought to form high-permeability, melt channels due to a positive feedback between melt flow and melt-solid reaction in the upper mantle. Reaction-infiltration instability (RII) theory predicts whether or not channels emerge from background flow. To test the applicability of RII theory to mantle rocks, we sandwiched a partially molten rock between a melt reservoir and a porous sink. Hot-pressed 50:50 mixtures of olivine (Ol) and clinopyroxene (Cpx) with either 4, 10 or 20 vol% alkali basalt formed ~4 mm long cylinders of partially molten rock. Source and sink are disks of alkali basalt and porous alumina. We annealed the melt-rock-sink triplets for up to 5 h at a confining pressure of Pc=300 MPa with effective pressure Pe=0 to 299.9 MPa at T=1200° or 1250°C.The melt fraction in the partially molten rock influences the permeability, which, together with the applied pressure gradient, controls the melt migration velocity. The temperature influences the reaction rate. Melt velocity and reaction rate are fundamental parameters in RII theory. In experiments, two distinct features form due to melt migration, 1) a planar reaction layer (RL) and 2) finger-shaped channels. Both the RL and the channels contain Ol+melt with no Cpx, indicating that the reaction melt1+Cpx→melt2+Ol occurs. The channels develop only if the melt velocity is >5µm/s. Once a channel reaches the porous sink, a large increase in the effective permeability is detected. The morphology and spacing of the channels depends on the initial melt fraction. With 20 vol% melt, multiple, voluminous channels with a spacing of 1.8±0.5 mm develop. At lower melt contents, fewer, thinner channels with a spacing of ~3 mm develop. The channel spacing predicted by theory is about a factor 2-4 smaller than observed.
Our results indicate that RII theory provides a solid framework for investigating melt migration in experiments and potentially a basis for extrapolation to mantle conditions.