OS43A-2029
Looking for Larvae Above an Erupting Submarine Volcano, NW Rota-1, Mariana Arc
Thursday, 17 December 2015
Poster Hall (Moscone South)
Maia Hanson, Western Washington University, Bellingham, WA, United States, Stace E Beaulieu, Woods Hole Oceanographic Inst, Woods Hole, MA, United States, Verena Tunnicliffe, University of Victoria, Deptartment of Biology/School of Earth & Ocean Sciences, Victoria, BC, Canada, William Chadwick, Oregon State University, NOAA/PMEL, Newport, OR, United States and Eric R Breuer, NOAA Honolulu, Honolulu, HI, United States
Abstract:
In 2009 the first marine protected areas for deep-sea hydrothermal vents in U.S. waters were established as part of the Volcanic Unit of the Marianas Trench Marine National Monument. In this region, hydrothermal vents are located along the Mariana Arc and back-arc spreading center. In particular hydrothermal vents are located near the summit of NW Rota-1, an active submarine volcano on the Mariana Arc which was erupting between 2003 through 2010 and ceased as of 2014. In late 2009, NW Rota-1 experienced a massive landslide decimating the habitat on the southern side of the volcano. This presented an enormous natural disturbance to the community. This project looked at zooplankton tow samples taken from the water column above NW Rota-1 in 2010, searching specifically for larvae which have the potential to recolonize the sea floor after such a major disturbance. We focused on samples for which profiles with a MAPR sensor indicated hydrothermal plumes in the water column. Samples were sorted in entirety into coarse taxa, and then larvae were removed for DNA barcoding. Overall zooplankton composition was dominated by copepods, ostracods, and chaetognaths, the majority of which are pelagic organisms. Comparatively few larvae of benthic invertebrates were found, but shrimp, gastropod, barnacle, and polychaete larvae did appear in low numbers in the samples. Species-level identification obtained via genetic barcoding will allow for these larvae to be matched to species known to inhabit the benthic communities at NW Rota-1. Identified larvae will give insight into the organisms which can re-colonize the seafloor vent communities after a disturbance such as the 2009 landslide. Communities at hydrothermal vents at other submarine volcanoes in the Monument also can act as sources for these planktonic, recolonizing larvae. As the microinvertebrate biodiversity in the Monument has yet to be fully characterized, our project also provides an opportunity to better describe both the zooplankton and benthic community composition in this area of the Monument.