EP21C-0924
An investigation of upland erosion and sources of fine-sediment using aerial and terrestrial LiDAR, mineralogy, geochemistry, and particle-size, Humbug Creek and Malakoff Diggings State Historic Park, California

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Jennifer Curtis1, Charles N Alpers1, Jim Howle2, Carrie Monohan3, John Ward4, Tim Lane Bailey5 and Cyndie Walck6, (1)USGS California Water Science Center Sacramento, Sacramento, CA, United States, (2)usgs, truckee, CA, United States, (3)Sierra Fund, NevadaCity, CA, United States, (4)Chico State University, Chico, CA, United States, (5)Humboldt State University, Arcata, CA, United States, (6)Calfornia State Parks, Malakoff, CA, United States
Abstract:
One of the largest hydraulic mines (1.6 km2) is located in California’s Sierra Nevada within the Humbug Creek watershed and Malakoff Diggins State Historic Park (MDSHP). Previous work indicates typical annual discharge from Humbug Creek of > 500,000 kg of sediment and > 100 g of mercury. This study uses photogrammetry and repeat high-resolution topographic surveys to quantify erosion rates and geomorphic processes, and sediment “fingerprinting” to quantify contributions of fine-sediment sources. The headwaters of Humbug Creek are underlain by volcanic mudflows, whereas MDSHP’s denuded and dissected landscape is composed of weathered auriferous sediments susceptible to chronic rill and gully erosion with block failures and debris flows occurring in more cohesive terrain. Aerial LiDAR (November 2014) was used to create a 1-meter digital elevation model (DEM); photogrammetry will be used to create a pre-1997 DEM from historic aerial photographs. DEM differencing will provide an integrated estimate of long-term erosion averaged over ~20 years in unvegetated areas. Finer-resolution (1-cm) terrestrial LiDAR (T-LiDAR) scans were made in late 2014 at four pit locations and will be repeated in the fall of 2015 and 2016. The T-LiDAR time series will provide annual erosion rates under modern conditions, allowing assessment of relative contributions from shallow surface processes and deeper gravity-driven processes. In 2014‒15 we collected storm runoff and in-situ hillslope samples. Sediment fingerprints (mineralogy, major elements, trace elements, and particle size) for source sediments will be used to assess relative contributions from fine-sediment sources using a statistical mixing model. We will present our approach, preliminary results, and discuss how this study supports selection and implementation of management and remediation strategies to ameliorate the discharge of sediment and mercury and mitigate downstream water-quality impacts.