DI11C-2618
Seismological detection of “730-km” discontinuity beneath Japan subduction zone

Monday, 14 December 2015
Poster Hall (Moscone South)
Zhen Liu, Yale University, New Haven, CT, United States
Abstract:
Because the mantle transition zone likely contains a large amount of water (Karato, 2011; Pearson et al., 2014), vertical material transport across the transition would cause partial melting that may produce seismic signals above and/or below the transition zone. Schmandt et al. (2014) observed a seismic low-velocity zone (LVZ) at the top of the lower mantle (~730 km) beneath the southwestern US, arguing for dehydration melting due to downward flow across the 670-km discontinuity (670) from the transition zone. These authors further proposed a correlation between seismic velocity reductions and the direction of water transport, in which LVZ at ~730 km indicates materials moving downward from the transition zone, while the lack of LVZ at this depth would suggest an upward flow of mantle materials. Other regions also need to be investigated to confirm the correlation between this seismic feature and mantle water transport. We test their model by detecting “730-km” discontinuity beneath the Japan subduction zone using frequency-dependent receiver functions. In addition, water transport above the 410-km discontinuity (410) also plays an important role in global water circulation (Bercovici and Karato, 2003). Seismological studies (e.g. Courtier and Revenaugh, 2007; Schaeffer and Bostock, 2010) have observed LVZs above the 410, which might be caused by dehydration melting due to the upwelling of hydrated materials across the 410-km discontinuity from the transition zone. In this study, we also detect potential LVZs above 410 to establish a correlation between seismic velocity drop and flow direction. Around the Japan subduction zone, our preliminary results show evidence of low velocity zones below 670 in regions where stagnant slab is present for a substantial amount of time but not in other regions suggesting a variety of vertical mass transport in this region.

Key words: transition zone, water transport, subduction zone, melting, receiver functions