H41C-1322
Simulations of Carbon Dioxide Storage and Methane Production from Guest Molecule Exchange of Hydrates Using Reactive Transport Modeling and Gibbs Energy Minimization

Thursday, 17 December 2015
Poster Hall (Moscone South)
Kristopher Darnell, University of Texas, Institute for Geophysics, Austin, TX, United States and Peter B Flemings, University of Texas at Austin, Austin, TX, United States
Abstract:
We investigate guest molecule exchange of hydrates as a method for simultaneous carbon dioxide storage and methane production. We simulate N2/CO2 binary gas mixture injection into marine and terrestrial methane hydrate bearing sediments. Different compositions of the injected gas can lead to four possible outcomes: 1) Injected gas flows downstream past methane hydrate and does not alter the methane hydrate, 2) Injected gas causes complete dissociation of methane hydrate, which creates a gas mixture of methane and injected gas that flows downstream, 3) Injected gas causes complete dissociation of methane hydrate with flow of methane gas downstream and all injected gas replaces methane in the hydrate cage, 4) Injected gas causes partial dissociation of methane hydrate with some replacement of methane in the hydrate cage and downstream flow of a methane and injected gas mixture. We focus on how composition of injected gas affects the outcome of the injection process, and then determine the optimal injection mixture of N2/CO2 for carbon dioxide storage and methane production. Our simulations combine dynamic flash calculations using the Gibbs energy minimization of Ballard and Sloan (2004) with 1-d reactive transport modeling. This work provides insight into the efficiency of the guest molecule exchange process in methane hydrate systems. Our results can be directly incorporated into simulations of more complex geometries and field settings such as the Ignik Sikumi Gas Hydrate Field Trial.

References

Ballard, A. L., and Sloan, E. D. (2004). The next generation of hydrate prediction: Part III. Gibbs energy minimization formalism. Fluid phase equilibria, 218(1), 15-31.