S21C-01
2015 USGS Seismic Hazard Model for Induced Seismicity
Tuesday, 15 December 2015: 08:00
305 (Moscone South)
Mark David Petersen, Denver Federal Center, Lakewood, CO, United States
Abstract:
Over the past several years, the seismicity rate has increased markedly in multiple areas of the central U.S. Studies have tied the majority of this increased activity to wastewater injection in deep wells and hydrocarbon production. These earthquakes are induced by human activities that change rapidly based on economic and policy decisions, making them difficult to forecast. Our 2014 USGS National Seismic Hazard Model and previous models are intended to provide the long-term hazard (2% probability of exceedance in 50 years) and are based on seismicity rates and patterns observed mostly from tectonic earthquakes. However, potentially induced earthquakes were identified in 14 regions that were not included in the earthquake catalog used for constructing the 2014 model. We recognized the importance of considering these induced earthquakes in a separate hazard analysis, and as a result in April 2015 we released preliminary models that explored the impact of this induced seismicity on the hazard. Several factors are important in determining the hazard from induced seismicity: period of the catalog that optimally forecasts the next year’s activity, earthquake magnitude-rate distribution, earthquake location statistics, maximum magnitude, ground motion models, and industrial drivers such as injection rates. The industrial drivers are not currently available in a form that we can implement in a 1-year model. Hazard model inputs have been evaluated by a broad group of scientists and engineers to assess the range of acceptable models. Results indicate that next year’s hazard is significantly higher by more than a factor of three in Oklahoma, Texas, and Colorado compared to the long-term 2014 hazard model. These results have raised concern about the impacts of induced earthquakes on the built environment and have led to many engineering and policy discussions about how to mitigate these effects for the more than 7 million people that live near areas of induced seismicity.