B52C-07
Soil Respiration - A Geochemist's Perspective

Friday, 18 December 2015: 11:50
2006 (Moscone West)
Philippe Van Cappellen, University of Waterloo, Ecohydrology Research Group, Waterloo, ON, Canada
Abstract:
Soil biogeochemistry is largely driven by the decomposition of plant-derived organic matter by soil microorganisms. In addition to its effects on water quality and soil fertility, the decomposition of organic matter couples soil processes to climate, via the production and emission of greenhouse gases. In this presentation, I will review a number of key factors controlling the rate of decomposition of soil organic matter. In particular, I will discuss the importance of the spatial and temporal variations in redox conditions as drivers of soil respiration. The discussion will highlight the limitations of current soil respiration models based on partitioning soil organic matter in a finite number of pools of different degradability. In order to predict the sensitivity of soil respiration to anthropogenic pressures - including climate warming - it is crucial to relate the apparent degradability of soil organic matter to the geochemical and hydrological dynamics of the soil environment. Overall, there remains much scope for geochemists to help develop more robust, process-based, representations of soil respiration in global carbon models and climate predictions.