B41F-0492
Short-Range-Order Mineral Physical Protection On Black Carbon Stabilization

Thursday, 17 December 2015
Poster Hall (Moscone South)
Biqing Liang, National Cheng Kung University, Department of Earth Sciences, Tainan, Taiwan
Abstract:
Soil organic matter is one of the largest reservoirs in global carbon cycle, and black carbon (BC) represents a chemical resistant component. Black C plays an important role in global climate change. Generally considered recalcitrant due to high aromaticity, the reactive surface and functional groups of BC are crucial for carbon sequestration in soils. Mineral sorption and physical protection is an important mechanism for BC long term stabilization and sequestration in environments. Previous studies on mineral protection of BC were limited to analysis techniques in two-dimensions, for example, by SEM, TEM, and NanoSIMS. Little is known about the scope of organo-mineral association, the in-situ distribution and forms of minerals, and the ultimate interplay of BC and minerals. The aim of this study is to investigate the three-dimensional interaction of organic C and minerals in submicron scale using synchrotron-based Transmission X-ray Microcopy (TXM) and Fourier-Transform Infrared Spectroscopy (FTIR). Abundant poorly-crystallined nano-minerals particles were observed. These short-range-order (SRO) minerals also aggregate into clusters and sheets, and form envelops-like structures on the surface of BC. On top of large surface contact area, the intimate interplay between BC and minerals reinforces the stability of both organic C and minerals, resulting from chemical bonding through cation bridging and ligand exchange. The mineral protection enhances BC stabilization and sequestration and lowers its bioavailability in environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding.