B43I-0664
Characterizing Soil Organic Carbon Recalcitrance in Longleaf Pine (Pinus palustris Mill) Stands

Thursday, 17 December 2015
Poster Hall (Moscone South)
John R Butnor, USDA Forest Service, South Burlington, VT, United States
Abstract:
Historically, longleaf pine (LLP) stands in the southeastern US experienced frequent fires. Today managed LLP stands are burned at 2-5 year intervals to reduce fuels and hardwood competition and manage for biodiversity. These are not stand replacing fires, though considerable amounts of biomass are burned and the conversion rate to biochemically stabilized black carbon (BC) is unknown. The primary mechanisms for long-term carbon sequestration in soil are mineral association, biochemical transformation (e.g. pyrogenesis) and physical protection. We quantified the recalcitrance of soil organic carbon (SOC) and its oxidation resistant fraction (SOCR; defined as residual SOC following H2O2 treatment and dilute HNO3 digestion) using radiocarbon dating (SOC and SOCR) and benzene polycarboxylic acids (BPCA) as molecular markers for polyaromatic C associated with BC. Mineral stabilized C is largely represented by SOCR contents and BC by total BPCA contents. Soils were collected by depth (0-10, 10-20, 20-50, 50-100 cm) at 14 managed LLP stands in Louisiana (LA), Georgia (GA) and North Carolina (NC) burned every two to five years. Across all sites, SOC and SOCR contents declined with soil depth, though SOCR:SOC increased with depth (0.13, 0.15, 0.22, 0.31). SOCR was more 14C depleted than SOC and Δ14C values became more negative with soil depth (SOCR: -195, -318, -458, -553 vs. SOC 23, -39, -156, -334), indicating that SOCR had a much longer mean residence time. The Δ14C values correspond to mean ages of SOCR ranging from 1777 to 6969 years and of SOC from 84 to 3319 years. We obtained very low BPCA yield from SOCR, and it is unclear whether BC was absent or not accessible with the BPCA method. Preliminary analysis of total BPCA (bulk soil) indicates interactions between soil series and depth. Total BPCA concentration of SOC in the upper 10 cm was 136 g kg-1 C in LA and more than six times the concentration in GA and NC. On deep sands in NC, the highest BPCA concentration of SOC was found at 50-100 cm (68 g kg-1 C), which was three times higher than in GA or LA at that depth. Variation in bulk soil Δ14C was largely explained by SOCR:SOC and soil depth (combined partial R2 0.84), while BPCA:SOC contributed an additional 0.02 partial R2. This implies that SOC recalcitrance is largely controlled by mineral association versus pyrogenic transformation.