B43G-0624
Dynamic Root Distribution in the Community Land Model

Thursday, 17 December 2015
Poster Hall (Moscone South)
Beth A Drewniak, Argonne National Laboratory, Argonne, IL, United States
Abstract:
Roots are responsible for water and nutrient uptake for plant needs, functioning to couple the above and belowground ecosystems as a photosynthesis driver. Roots respond to their environment with foraging strategies to maximize nutrient acquisition. However, roots have one of the simplest representations in Earth System Models (ESMs). Most root algorithms in ESMs consist of a fixed rooting depth and distribution, which varies only with plant functional type (PFT). Although this method works in general for many ecosystems, there are several regions (e.g., arid, boreal) where root distribution is either overestimated or underestimated resulting in plant stress induced lost productivity. In order to allow ecosystems to respond to changes in environment such as from climate change, roots require a time varying structure to adapt to heterogeneity of water and nitrogen in the soil. This work presents a new approach to representing roots in the Community Land Model. The methodology is designed to optimize root distribution for both water and nitrogen uptake, with a priority given to plant water needs. The roots can respond to the soil vertical profile of nutrients, influencing the plant extractable resources and therefore the above ground vegetation dynamics. The dynamic root profile results in an increase in gross primary productivity and crop yield.