GC13J-08
Climate refugia: The physical, hydrologic and disturbance basis

Monday, 14 December 2015: 15:25
3005 (Moscone West)
Zachary A Holden, University of Montana, Missoula, MT, United States
Abstract:
Projected changes in global climate and associated shifts in vegetation have increased interest in understanding species persistence at local scales. We examine the climatic and physical factors that could mediate changes in the distribution of vegetation in regions of complex topography. Using massive networks of low-cost temperature and humidity sensors, we developed topographically-resolved daily historical gridded temperature data for the US Northern Rockies. We used the WindNinja model to create daily historical wind speed maps across the same domain. Using a spatially distributed ecohydrology model (ECH2O) we examine separately the sensitivity of modeled evapotranspiration and soil moisture to wind, radiation, soil properties, minimum temperature and humidity. A suite of physical factors including lower wind speeds, cold air drainage, solar shading and increased soil depth reduce evapotranspiration and increase late season moisture availability in valley bottoms. Evapotranspiration shows strong sensitivity to spatial variability in surface wind speed, suggesting that sheltering effects from winds may be an important factor contributing to mountain refugia.

Fundamental to our understanding of patterns of vegetation change is the role of stand-replacing wildfires, which modify the physical environment and subsequent patterns of species persistence and recruitment. Using satellite-derived maps of burn severity for recent fires in the US Northern Rockies we examined relationships between wind speed, cold air drainage potential and soil depth and the occurrence of unburned and low severity fire. Severe fire is less likely to occur in areas with high cold air drainage potential and low wind speeds, suggesting that sheltered valley bottoms have mediated the severity of recent wildfires. Our finding highlight the complex physical mechanisms by which mountain weather and climate mediate fire-induced vegetation changes in the US Northern Rocky Mountains.