OS23C-2031
Tracking recent climate and anthropogenic change in Central America in sediments form the lower fan of the Rio Yaqui, Gulf of California, Mexico

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Ivano W Aiello, Moss Landing Marine Laboratories, Moss Landing, CA, United States, Ana Christina Ravelo, University of California-Santa Cruz, Santa Cruz, CA, United States, Renato Moraes, California State University Monterey Bay, Seaside, CA, United States and Peter W Swarzenski, USGS, Pacific Coastal and Marine Science Center, Santa Cruz, CA, United States
Abstract:
We report the results of preliminary sedimentologic analyses of a ~3.3m long piston core (P13) collected in the lower fan of the Rio Yaqui (Guaymas Basin, Gulf of California; depth, 1859m) by UNAM’s (Universidad Nacional Autónoma de México) research ship El Puma in 2014. The core was collected to test the potential for high-resolution reconstructions of basin-scale paleoclimate in the Pacific and the Mesoamerican region. Shipboard and post-cruise analyses include magnetic susceptibility (MS), smear slide counts and laser diffraction particle size analysis. The core is being analyzed for X-Ray Fluorescence (XRF) and color reflectance, and a 210Pb age model is being constructed. Preliminary results show that Rio Yaqui lower fan sediment differs significantly from that in the Guaymas Basin, which is dominantly diatom ooze. The lower ~2m of core P13 show prominent alternations (~10-20cm) between very-fine-grained, clay intervals characterized by higher MS and mixed diatom and clay intervals, with coarser grain size and lower MS values. In contrast, the upper ~1m has distinctive high MS sand turbidites alternating with diatom-rich layers. Previous core studies from nearby ODP Leg 64 site show sedimentation rates of ~1.2 m/ka; as these sites are further away from the Yaqui delta the sedimentation rates for core P13 should be higher possibly recording only the last few hundred years of sedimentation. Clay/diatom cycles in the lower part of the core could record decadal- or ENSO-scale wet/aridity cycles in the Sonoran Mainland. Conversely, the coarser siliciclastic intervals and the diatom layers in the upper part of the core could reflect the last few decades of land usage in the watershed of the Rio Yaqui, the most important river in the state of Sonora, Mexico. These include large modifications to the river’s hydrography (e.g. construction of dams and aqueducts), rapidly expanding mass agricultural practices in the region, and increased eutrophication in the Gulf.