SM22A-10
Propagation of Buoyancy Waves Through the Magnetosphere

Tuesday, 15 December 2015: 12:08
2018 (Moscone West)
Richard Wolf, Aaron Moore Schutza and Frank R Toffoletto, Rice University, Houston, TX, United States
Abstract:
THEMIS observations analyzed by E. V. Panov and collaborators have shown that, when an earthward-moving plasma-sheet flow burst encounters the quasi-dipolar region of the magnetosphere, the plasma that formed the burst often oscillates a few times before coming to rest. The observed oscillation periods seem in good agreement with the frequency calculated theoretically for a thin filament oscillating in the same region. However, since a thin filament is an extreme idealization of a real flow burst, we have investigated the relationship between thin-filament oscillations and the normal modes of a 2D plasma system that is analogous to the magnetosphere. We have developed an analytic model of the normal modes of an idealized plasma configuration that consists of a wedge with circular field lines. For that system, the low-frequency wave obeys a one-dimensional differential equation that is essentially the same as the equation describing buoyancy oscillations in the neutral atmosphere. An important term in the neutral-atmosphere equation is proportional to the square of ωb, which is called the "buoyancy frequency" or "Brunt-Väisälä frequency", and the corresponding quantity in the plasma equation is exactly the square of the fundamental oscillation frequency of a thin filament. In both cases, a buoyancy wave of frequency ω propagates in the region where ωb>ω, but is evanescent in the region where ωb<ω. A thin-filament code has been used to calculate the buoyancy frequency in different regions of the magnetosphere, as represented by a force-balanced configuration based on a Tsyganenko model. The results suggest that, if the braking of a bursty bulk flow produces an oscillation at the buoyancy frequency at about 10 RE, it may generate a buoyancy wave that can propagate earthward to the plasmapause.