P32B-04
Characterizing Exoplanets with 2-meter Class Space-based Coronagraphs

Wednesday, 16 December 2015: 11:56
2012 (Moscone West)
Tyler D Robinson, University of California Santa Cruz, Astronomy and Astrophysics, Santa Cruz, CA, United States, Mark S Marley, NASA Ames Research Center, Moffett Field, CA, United States and Karl R Stapelfeldt, NASA Goddard Space Flight Center, Greenbelt, MD, United States
Abstract:
Several concepts now exist for small, space-based missions to directly characterize exoplanets in reflected light. In this presentation, we explore how instrumental and astrophysical parameters will affect the ability of such missions to obtain spectral and photometric observations that are useful for characterizing their planetary targets. We discuss the development of an instrument noise model suitable for studying the spectral characterization potential of a coronagraph-equipped, space-based telescope. To be consistent with near-future missions and technologies, we assume a baseline set of telescope and instrument parameters that include a 2 meter diameter primary aperture, an operational wavelength range of 0.4–1.0 μm, and an instrument spectral resolution of λ/Δλ=70. We present applications of our baseline noise simulator to a variety of spectral models of different planet types, emphasizing Earth-like planets. With our exoplanet spectral models, we explore wavelength-dependent planet-star flux ratios for main sequence stars of various effective temperatures, and discuss how coronagraph inner and outer working angle constraints will influence the potential to study different types of planets. For planets most favorable to spectroscopic characterization—including nearby Earth twins and super-Earths—we study the integration times required to achieve moderate signal-to-noise ratio spectra. We also explore the sensitivity of the integration times required to detect the base of key absorption bands (for water vapor and molecular oxygen) to coronagraph raw contrast performance, exozodiacal light levels, and the distance to the planetary system. We will also discuss prospects for detecting ocean glint, a habitability signature, from nearby Earth-like planets, as well as the extension of our models to a more distant future Large UV-Optical-InfraRed (LUVOIR) mission.