T12C-08
An Amphibious Magnetotelluric Investigation of the Cascadian Seismogenic and ETS zones.

Monday, 14 December 2015: 12:05
304 (Moscone South)
Blake Anthony Parris1, Dean Livelybrooks1, Paul Bedrosian2, Gary D Egbert3, Kerry Key4, Adam Schultz3, Alex Cook1, Max Kant1, Nick Wogan1 and Alexa Zeryck1, (1)University of Oregon, Eugene, OR, United States, (2)USGS, Denver, CO, United States, (3)Oregon State University, Corvallis, OR, United States, (4)Institute of Geophysics and Planetary Physics La Jolla, La Jolla, CA, United States
Abstract:
The amphibious Magnetotelluric Observations of Cascadia using a Huge Array (MOCHA) experiment seeks to address unresolved questions about the seismogenic locked zone and down-dip transition zone where episodic tremor and slip (ETS) originates. The presence of free fluids is thought to be one of the primary controls on ETS behavior within the Cascadia margin. Since the bulk electrical conductivity in the crust and mantle can be greatly increased by fluids, magnetotelluric(MT) observations can offer unique insights on the fluid distribution and its relation to observed ETS behavior. Here we present preliminary results from the 146 MT stations collected for the MOCHA project. MOCHA is unique in that it is the first amphibious array of MT stations occupied to provide for 3-D interpretation of conductivity structure of a subduction zone.

The MOCHA data set comprises 75 onshore stations and 71 offshore stations, accumulated over a two-year period, and located on an approximate 25km grid, spanning from the trench to the Eastern Willamette Valley, and from central Oregon into middle Washington.

We present the results of a series of east-west (cross-strike) oriented, two-dimensional inversions created using the MARE2DEM software that provide an initial picture of the conductivity structure of the locked and ETS zones and its along strike variations. Our models can be used to identify correlations between ETS occurrence rates and inferred fluid concentrations. Our modeling explores the impact of various parameterizations on 2-D inversion results, including inclusion of a smoothness penalty reduction along the inferred slab interface. This series of 2-D inversions can then be used collectively to help make and guide an a priori 3-D inversion. In addition we will present a preliminary 3-D inversion of the onshore stations created using the ModEM software. We are currently working on modifying ModEM to support inversion of offshore data. The more computationally intensive 3-D inversion of the full amphibious data set will address questions regarding along-strike heterogeneity in fluid distributions within the locked and ETS-originating zones.