T43D-3039
Repeating Earthquakes Following an Mw 4.4 Earthquake Near Luther, Oklahoma

Thursday, 17 December 2015
Poster Hall (Moscone South)
Tim Clements1, Katie M Keranen1 and Heather M Savage2, (1)Cornell University, Ithaca, NY, United States, (2)Columbia University of New York, Palisades, NY, United States
Abstract:
An Mw 4.4 earthquake on April 16, 2013 near Luther, OK was one of the earliest M4+ earthquakes in central Oklahoma, following the Prague sequence in 2011. A network of four local broadband seismometers deployed within a day of the Mw 4.4 event, along with six Oklahoma netquake stations, recorded more than 500 aftershocks in the two weeks following the Luther earthquake. Here we use HypoDD (Waldhauser & Ellsworth, 2000) and waveform cross-correlation to obtain precise aftershock locations. The location uncertainty, calculated using the SVD method in HypoDD, is ~15 m horizontally and ~ 35 m vertically. The earthquakes define a near vertical, NE-SW striking fault plane. Events occur at depths from 2 km to 3.5 km within the granitic basement, with a small fraction of events shallower, near the sediment-basement interface. Earthquakes occur within a zone of ~200 meters thickness on either side of the best-fitting fault surface. We use an equivalency class algorithm to identity clusters of repeating events, defined as event pairs with median three-component correlation > 0.97 across common stations (Aster & Scott, 1993). Repeating events occur as doublets of only two events in over 50% of cases; overall, 41% of earthquakes recorded occur as repeating events. The recurrence intervals for the repeating events range from minutes to days, with common recurrence intervals of less than two minutes. While clusters occur in tight dimensions, commonly of 80 m x 200 m, aftershocks occur in 3 distinct ~2km x 2km-sized patches along the fault. Our analysis suggests that with rapidly deployed local arrays, the plethora of ~Mw 4 earthquakes occurring in Oklahoma and Southern Kansas can be used to investigate the earthquake rupture process and the role of damage zones.